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1 Introduction

Let f be analytic in the unit disk D, and let Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2 be its Schwarzian
derivative. Starting with the fundamental work of Nehari, [11], and ever since the paper of Ahlfors
and Weill, [2], univalence criteria involving the Schwarzian derivative have gone hand-in-hand with
the phenomenon of quasiconformal extension to the sphere. The neatest formulation of this is a
theorem of Gehring and Pommerenke, [9], which we state as follows:

Theorem 1 Let ρ(z) be any positive function on D. Suppose that |Sf(z)| ≤ aρ(z)2 implies f is
univalent in D. If 0 ≤ t < 1 and |Sf(z)| ≤ taρ(z)2 then f has a quasiconformal extension to
Ĉ = C ∪ {∞}.

The Gehring-Pommerenke result is actually more general than this in that it holds for functions
whose domain is a quasidisk, i.e., the image of D under a quasiconformal mapping of Ĉ. On account
of this generality their proof does not provide an explicit extension, and just such a formula is one
of the most striking aspects of the Ahlfors-Weill paper. Ahlfors [1] does exhibit a quasiconformal
extension for functions defined in a quasidisk and having small Schwarzian, modeled on the one
used in [2], but his hypothesis is in terms of the Poincaré metric and not an arbitrary function ρ;
see also [10].

A rich class of examples to which Theorem 1 can be applied comes from an older result of
Nehari [12], [13]:

Theorem 2 (Nehari’s p-criterion) The function f will be univalent in D if

(1.1) |Sf(z)| ≤ 2p(|z|),

where p(x) is a function with the following properties: (a) p(x) is positive and continuous for
−1 < x < 1; (b) p(−x) = p(x); (c) (1−x2)2p(x) is nonincreasing for 0 ≤ x < 1; (d) the differential
equation

(1.2) y′′ + py = 0

has a solution which does not vanish for −1 < x < 1.
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This includes many of the known results. For example, the choices of p(x) = 1/(1− x2)2 and
p(x) = π2/4 give Nehari’s original univalence criteria in [11]:

(1.3) |Sf(z)| ≤ 2

(1− |z|2)2
, |Sf(z)| ≤ π2

2
.

There is now a fairly satisfactory treatment of homeomorphic and quasiconfomal extensions for
functions satisfying |Sf(z)| ≤ 2/(1 − |z|2)2 (the Nehari class); in addition to the original Ahlfors-
Weill paper see [10], [5], and [8]. We will specifically exclude this case of the p-criterion in the
present paper, and, interestingly, this is what allows our analysis of the other cases to proceed.

Recent progress in understanding the differential geometry associated with univalence criteria
has emphasized the role of conformal metrics, the necessary distinctions between complete and
incomplete metrics that then arise, and properties of extremal functions for the criteria, see [14],
[4], [7]. Let eσ|dz| be a smooth conformal metric on D. Let 0 < δ ≤ ∞ be the diameter of D with
respect to this metric. The general univalence criterion in [14] involves both δ and the Gaussian
curvature of the metric, and can be written in the form

(1.4) |Sf − 2(σzz − σ2
z)| ≤ 2σzz̄ +

2π2

δ2
e2σ,

see [4] and [7]. If an analytic function satisfies (1.4) it is univalent. The criterion comes from
defining a generalized Schwarzian of the function f in a way that depends on the metric, see [15];
a conformal change of the metric changes the terms that appear in the criterion. When the metric
is complete then δ =∞ and the condition becomes

(1.5) |Sf − 2(σzz − σ2
z)| ≤ 2σzz̄.

As examples, to recover the conditions (1.3) from (1.5) and (1.4) take the metric eσ|dz| to be,
respectively, the Poincaré metric (curvature −4, diameter ∞; complete), and the euclidean metric
(curvature 0, diameter 2; incomplete).

Can we get from (1.1) to (1.4) or (1.5)? What is the metric? Nehari’s original insight into
the relationship bewteen univalence and differential equations was to relate the growth of the
Schwarzian to the disconjugacy of solutions of (1.2) via Sturm comparison theorems. We turn this
around. From a non-vanishing solution of (1.2) we construct a complete, radial, conformal metric
of negative curvature for which (1.1) implies (1.5). This is done in Section 2 through the notion of
an extremal metric for a p-criterion.

When a function satisfies (1.5), so for a complete metric, techniques and results are available
that do not apply when the metric is incomplete. Thus in Section 3 we employ a generalization
of the Ahlfors-Weill extension, as developed in [7], to obtain a homeomorphic extension to Ĉ for a
function satisfying (1.1) strictly, |Sf(z)| < 2p(|z|).

This extension may in some cases fail to be quasiconformal even when the strong bound holds,
|Sf(z)| ≤ 2tp(|z|), t < 1, and in overcoming this difficulty we were led to a general method for
perturbing the metric. The analysis involves some technical aspects which may be of independent
interest, and which we treat fully in Section 4. Furthermore, the resulting theorem proves to be
more general than one would expect from Theorem 1, in that the Ahlfors-Weill formula based on
the perturbed metric actually gives a quasiconformal extension for functions satisfying (1.1) strictly.
This is Theorem 4 in Section 3.

We end this paper with a brief section on the criterion |Sf(z)| ≤ π2/2 as one specific illustration
of what can be done with the results here. None of the earlier techniques apply to constructing
extensions for functions satisfying this very classical, very simple condition.
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We hope that the ideas we present can be of help in understanding more general phenomena. For
example, for what functions ρ can one prove a univalence result for a quasidisk as in the hypotheses
of the Gehring-Pommerenke theorem? Is there a geometric way of capturing the properties of
the function p in Theorem 2 that applies to the more general setting, and does the ‘strict’ versus
‘strong’ phenomenon hold there?

2 Extremal Radial Metrics and Perturbations

Radial Metrics from ODEs Let p(x) be a nonnegative, continuous function on [0, 1). From
now on we suppose that the solution u of

(2.1) u′′ + pu = 0, u(0) = 1, u′(0) = 0

is positive. Consider the radial metric on D given by

(2.2) |dw| = u−2(|z|)|dz|,

and let

F (r) =

∫ r

0
u−2(x) dx,

so that the metric can also be written as

F ′(|z|)|dz|.

The diameter of the disk is then
δ = 2F (1),

which may be infinite. The Gaussian curvature of the metric is

(2.3) K(z) = −2u4(|z|)(Au(|z|) + p(|z|)),

where

(2.4) Au(|z|) =

(
u′

u
(|z|)

)2

− 1

|z|
u′

u
(|z|).

The initial conditions on u imply that Au is continuous at the origin, and that the curvature is
negative.

The initial conditions also imply that u is decreasing, and hence that limx→1− u(x) exists. In
many cases this limit is zero and it matters to what order it vanishes. This determines whether
F (1) is infinite, i.e., whether the metric is complete.

Extremal Radial Metrics, Extremal Functions, and Jordan Domains So far the only
special aspect of the construction of the radial metric F ′(|z|)|dz| is the existence of the positive
solution to the initial value problem (2.1). The function F is the solution to SF = 2p on [0, 1),
normalized by F (0) = 0, F ′(0) = 1 and F ′′(0) = 0.

From now on we assume the three hypotheses on p in Theorem 2: (a) p(x) is positive and
continuous for −1 < x < 1; (b) p(−x) = p(x); (c) (1 − x2)2p(x) is nonincreasing for 0 ≤ x < 1.
When p is such a function we call the metric F ′(|z|)|dz| an extremal radial metric for the p-criterion,
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or, since we only work with radial metrics in this paper, simply an extremal metric. When referring
to Theorem 2 we shall then speak of a ‘p-criterion with an incomplete or complete metric’.

Under the stated hypotheses on p, F is defined only on (−1, 1). Many applications of Theorem
2 have an analytic p satisfying |p(z)| ≤ p(|z|) in the disk. In this case, if now

(2.5) F (z) =

∫ z

0
u−2(ζ) dζ

then F will be analytic and univalent in D. Of course, F ′(|z|)|dz| is also an extremal metric.
As introduced in [7], an extremal function satsifying the criterion (1.4), or (1.5), is a function

whose image is not a Jordan domain. Since we will subsume Theorem 2 under the more general
criterion, we also use this terminology in reference to a p-criterion. Still assuming that p is a
analytic in D, when F (1) = ∞ the function F is an extremal function since it is odd and so
F (1) = F (−1) =∞ as a point on the sphere. It was shown in [6] that, up to a rotation of F , this
is the only way a function satisfying a p-criterion can fail to map D onto a Jordan domain. As
a consequence, when p is not analytic all functions satisfying |Sf(z)| ≤ 2p(|z|) map onto Jordan
domains, so there are no extremal functions. Moreover, in [3] it was shown that if F (1) <∞ then
F (D) is actually a quasidisk, and so is f(D) for any function satisfying |Sf(z)| ≤ 2p(|z|). Hence F
is not an extremal function for the p-criterion, though F ′(|z|)|dz| is the corresponding (incomplete)
extremal metric.

Complete Extremal Metrics and Nehari’s p-criterion If σ(z) = −2 log u(|z|), so the
metric is also expressed as eσ|dz|, then a straightforward calculation shows that the inequality
(1.4) becomes, for z 6= 0,

|ζ2Sf(z) +Au(|z|)− p(|z|)| ≤ Au(|z|) + p(|z|) +
2π2

δ2
u(|z|)−4, ζ =

z

|z|
.

(This is a general calculation that holds for any conformal metric of the form u−2|dz|2.) In the
complete case, which will be of most interest, this is

(2.6) |ζ2Sf(z) +Au(|z|)− p(|z|)| ≤ Au(|z|) + p(|z|).

Via three lemmas we will show how a function f satisfying |Sf(z)| ≤ 2p(|z|) also satisfies (2.6).
It is necessary to separate the cases when an extremal metric is complete or incomplete, that is,
whether F (1) = ∞ or F (1) < ∞. We find that when the extremal metric is complete we obtain
(2.6) directly, but when it is incomplete the criterion obtains for a completion of the extremal
metric.

A helpful way of working with the distinction between complete and incomplete metrics comes
from reworking the differential equation (2.1) to compare p(x) to 1/(1− x2)2 more directly. Write

q(x) = (1− x2)2p(x).

Then q(x) > 0 and is nonincreasing on [0, 1).
If q(0) ≤ 1 then |Sf(z)| ≤ 2p(|z|) would imply |Sf(z)| ≤ 2/(1− |z|2)2. As we mentioned in the

introduction, this is a situation that has been studied elsewhere, and by specifically excluding it
here we are able to advance the understanding of the other univalence criteria included in Theorem
2. Thus for the rest of this paper we assume that

q(0) > 1.
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The monotonicity of q(x) implies that the limit q(1) = limx→1− q(x) exists. The fact that u has no
zeros implies that

q(1) < 1,

and it might be that q(1) = 0. To see why q(1) < 1, suppose by way of contradiction that q(1) ≥ 1.
Then p(x) ≥ 1/(1− x2)2 and it follows from the Sturm comparison theorem that u(x) ≤

√
1− x2.

Hence

F (x) ≥ L(x) =
1

2
log

1 + x

1− x
,

for x ∈ [0, 1), and therefore F maps (−1, 1) onto (−∞,∞). Consider the functionG(y) = F ◦L−1(y).
Note that SL(x) = 2/(1− x2)2 and recall that SF (x) = 2p(x).

We can write

G(y) =

∫ y

0
v−2(s) ds,

where

v′′ +
1

2
(SG)v = 0, v(0) = 1, v′(0) = 0.

Using the chain rule for the Schwarzian we see that SG(y) ≥ 0, and not identically zero. (In fact,
SG(0) = 2(q(1) − 1) ≥ 0.) Hence v is convex and not constant. This implies that for large s,
v(s) ≥ as+ b, a > 0, which in turn implies that G(∞) <∞, a contradiction.

Next, u is a solution of (2.1) if and only if

(2.7) w(x) =
u(x)√
1− x2

is a solution of

(1− x2)((1− x2)w′(x))′ = (1− q(x))w(x), w(0) = 1, w′(0) = 0.

The extra factor of 1 − x2 in the derivative motivates the change of variable x(s) = tanh s, for
which x′ = 1− x2. Let

(2.8) ϕ(s) = w(x(s))

and

(2.9) ν(s) = q(x(s)).

Then ϕ > 0, ν is nonincreasing, and

(2.10) ϕ′′(s) = (1− ν(s))ϕ(s), ϕ(0) = 1, ϕ′(0) = 0.

ϕ is an even function so it suffices to analyze it for s ≥ 0. At the end-points, ν(0) = q(0) > 1
and ν(∞) = q(1) < 1. Hence ϕ is initally concave down, has an inflection point when ν = 1 and
then becomes convex. It may or may not have a critical point for s > 0, which, if it occurs, must
be after ν becomes less than 1. Here is the key observation:

Lemma 1 F (1) <∞ if and only if ϕ has a critical point in (0,∞).
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Proof Suppose first that ϕ has no critical points. Then it is decreasing, and so too is u. Thus
w(x) ≤ w(0) = 1, that is,

u(x) ≤
√

1− x2.

Therefore

F (r) =

∫ r

0
u−2(x) dx ≥

∫ r

0

dx

1− x2
=

1

2
log

1 + r

1− r
,

so F becomes infinite at 1, as in the argument above.

Now supose that ϕ does have a critical point in (0,∞). It follows from the differential equation
(2.10) and the fact that ν is decreasing that for large s the solution ϕ will be bounded below by
some exponential eks, k > 0. The resulting upper bound for u easily implies that F remains finite
at 1.

In deriving (2.6) from |Sf(z)| ≤ 2p(|z|) when the extremal metric is complete, the main phe-
nomenon is, essentially, an upper bound in terms of p for the curvature of the metric. It is more
convenient for our present purposes to state this as an inequality between p and the operator Au,
defined in (2.4). We have the following:

Lemma 2 If the extremal metric F ′(|z|)|dz| is complete then Au(|z|) ≥ p(|z|).

Proof Let r = |z|, and rewrite Au(r) ≥ p(r) as

(2.11) ru2(r)p(r) ≤ r(u′(r))2 − u(r)u′(r).

Suppose that p(r) is C1. Since both sides of (2.11) vanish at r = 0 it suffices to prove the inequality
for the derivatives. After some cancellations using u′′ + pu = 0, this is equivalent to

p′

p
≤ −4

u′

u
,

which in terms of q and w is
q′

q
≤ −4

w′

w
.

But q′ ≤ 0, and since F is unbounded ϕ has no critical point so it is decreasing. Hence so is w,
thus w′ ≤ 0 and the inequality is trivial. In the general case, when p is just continuous, simply
approximate p uniformly on compact sets by smooth functions.

This is a rather simple, but useful result. Later we will need a parametrized version of the
inequality that is more difficult.

Finally, we show that a p-criterion with an incomplete extremal metric can be embedded in a
family of p-criteria where the final member has a complete extremal metric. This is based on the
observation that, to an extent, one can scale the function p and still maintain all the properties.

Lemma 3 Let p satisfy the hypotheses of Theorem 2 and suppose the associated extremal metric
F ′(|z|)|dz| is incomplete. Then there exists a 1 < τ0 <∞ such that
(i) For all 1 ≤ τ ≤ τ0 the functions τp satisfy the hypotheses of Theorem 2.
(ii) The associated extremal metrics F ′τ (|z|)|dz| are incomplete for 1 ≤ τ < τ0, while F ′τ0(|z|)|dz| is
complete.
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Proof By Lemma 1 the function ϕ, constructed from u (or F ), has a critical point in (0,∞). Let
τ > 1 and consider uτ ,wτ , qτ , ϕτ and ντ corresponding to the function τp. Note that qτ = τq and
ντ = τν, so

ϕ′′τ = (1− τν)ϕτ .

Standard arguments from differential equations, based on continuous dependence on parameters,
imply that there exists a largest value τ0 > 1 of the parameter τ such that the solution ϕτ is positive
for all τ ≤ τ0. Hence uτ > 0 for 1 ≤ τ ≤ τ0. It is easy to see that τ0 is finite. This proves (i).

Next, the solution ϕτ0(s) will necessarily be deceasing for all s > 0, while the ϕτ for τ < τ0 will
each have a critical point. This shows (ii).

We can now deduce:

Theorem 3 If p satisfies the hypotheses of Theorem 2 and |Sf(z)| ≤ 2p(|z|) then there is a com-
plete extremal metric for which f satisfies (2.6).

Proof As before, let F ′(|z|)|dz| be the associated extremal metric. Suppose first that the metric
is complete. By Lemma 2,

|ζ2Sf(z) +Au(|z|)− p(|z|)| ≤ |Sf(z)|+Au(|z|)− p(|z|)
≤ 2p(|z|) +Au(|z|)− p(|z|) = Au(|z|) + p(|z|),

which is (2.6).
Now suppose that the metric is incomplete. Appeal to Lemma 3 and simply observe that

|Sf(z)| ≤ 2p(|z|) trivially implies |Sf(z)| ≤ 2τ0p(|z|). The first part of the proof now applies to
the complete extremal metric F ′τ0(|z|)|dz|.

Perturbing Complete Extremal Metrics In connection with the problem of quasiconfor-
mal extensions in the next section it will be necessary to perturb a complete extremal metric while
still maintaining some of the key properties discussed above. We present the main lemmas here.
The proofs are somewhat technical, and we defer the details till Section 4.

From Lemma 2 we know that Au(|z|)/p(|z|) ≥ 1, but it will be important also to consider
lim|z|→1Au(|z|)/p(|z|) together with its relation to the nonincreasing function q(x) = (1−x2)2p(x)
and its limit q(1) = limx→1− q(x). The first result is as follows:

Lemma 4 Suppose that the extremal metric F ′(|z|)|dz| is complete. Then

lim
x→1−

(1− x2)
u′

u
(x) = −(1 +

√
1− q(1)),(2.12)

L = lim
|z|→1

Au(|z|)
p(|z|)

= lim
|z|→1

1

p(|z|)

(
u′

u
(|z|)

)2

=
(1 +

√
1− q(1))2

q(1)
.(2.13)

Since q(1) < 1 we know that L > 1. It might be that L =∞, equivalently that q(1) = 0. This
happens, for example, with p(x) = π2/2 or p(x) = 2/(1− x2). The latter choice of p produces the
univalence criterion |Sf(z)| ≤ 4/(1− |z|2), see [13].

Handling the case L = ∞ presents problems in the next section. These are surmounted by
perturbing the metric, a technique that works whether or not L =∞.
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It follows from (2.12) that

(2.14) u(x) ∼
(

1− x
1 + x

)β
, β =

1

2
(1 +

√
1− q(1)) >

1

2
,

as x→ 1. Therefore, for α ∈ (1/2β, 1) the function

Fα(r) =

∫ r

0
u−2α(x) dx

will be unbounded and define a complete radial metric

(2.15) F ′α(|z|)|dz|.

We refer to this as a perturbed extremal metric. Computing the Gaussian curvature as in (2.3)
introduces quantities Aαu and pα corresponding to Au and p, where now

Aα(|z|) = α2

(
u′

u
(|z|)

)2

− α

|z|
u′

u
(|z|)(2.16)

pα(x) = α

(
p(x) + (1− α)

(
u′

u
(x)

)2
)
.(2.17)

The inequality (2.6) becomes

(2.18) |ζ2Sf(z) +Aαu(|z|)− pα(|z|)| ≤ Aαu(|z|) + pα(|z|), ζ =
z

|z|
.

There is a version of Lemma 2 for perturbed metrics that includes the earlier result.

Lemma 5 For a perturbed extremal metric there is an α0 ∈ (1/2β, 1) such that Aαu(|z|) ≥ pα(|z|)
for all α ∈ [α0, 1].

For our applications we have to get from a strict inequality |Sf(z)| < 2p(|z|) in the unperturbed
case to a strict inequality in (2.18) when the metric has been perturbed. For this we need:

Lemma 6 If |Sf(z)| < 2p(|z|) and p gives a complete extremal metric, then there exists an α1 ∈
(1/2β, 1) such that |Sf(z)| < 2pα(|z|) for all α ∈ [α1, 1].

Now note that if 1 ≥ α > max{α0, α1} and |Sf(z)| < 2p(|z|) we obtain (2.18) by

|ζ2Sf(z) +Aαu(|z|)− pα(|z|)| ≤ |Sf(z)|+Aα(|z|)− pα(|z|)
< Aα(|z|) + pα(|z|).

3 Quasiconformal Extensions

A function satisfying a p-criterion has a continuous extension to D. This was shown by the authors
in [6] (and more generally in [7]) and by Steinmentz [16], [17]. We want to construct extensions to
Ĉ = C ∪ {∞} for a function satisfying a strict p-criterion,

(3.1) |Sf(z)| < 2p(|z|).
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By virtue of the discussion of extremal functions in the preceding section, all functions satisfying
(3.1) map D onto Jordan domains, at least.

According to Theorem 3, if a function f satisfies any p-criterion it then does so with a complete
extremal metric. Thus we can now suppose without loss of generality that the extremal metric
F ′(|z|)|dz| corresponding to p is complete.

We follow the construction in [7] of a generalization of the Ahlfors-Weill extension, applied in
this case to D with a (possibly perturbed) extremal metric F ′α(|z|)|dz|. Let Ω = f(D) and define
a mapping of Ω by

(3.2) Λf (w) = w +
1

∂w log ρf (w)
,

where

ρf (f(z)) =
F ′α(|z|)
|f ′(z)|

.

Next define

(3.3) Ef (z) = f(z)for |z| ≤ 1,Λf (f(1/z̄))for |z| > 1.

We remark that Λf is a conformally natural reflection, meaning that ΛM◦f = M ◦ Λf for any
Möbius transformation M .

There are conditions discussed in [7], that will apply here, under which Λf is a reflection across
∂Ω and Ef is an extension of f . The fact that f(z) and Λf (f(1/z̄)) agree on |z| = 1 depends
essentially on the fact that the metric is complete. We now state:

Theorem 4 Suppose f satisfies Theorem 2 with a complete extremal metric. If |Sf(z)| < 2p(|z|).
then there exists an α ∈ (1/2β, 1] such that (3.3) is a quasiconformal extension of f to Ĉ.

First take 0 < α ≤ 1 close enough to 1 so that Lemma 5 and Lemma 6 apply, and therefore so
that

(3.4) |ζ2Sf(z) +Aαu(|z|)− pα(|z|)| < Aαu(|z|) + pα(|z|), ζ = z/|z|.

Using the results in [7], especially the proof of Corollary 5, this already implies that Ef is a
homeomorphic extension of f . Briefly, if Ef is not a homeomorphism then there is some normal-
ization of f by a Möbius transformation, M ◦ f , for which F ′α(|z|)/|(M ◦ f)′(|z|)| has at least two
critical points. Then, by a convexity argument, this function attains its absolute minimum in D
along the geodesic joining the two critical points. In turn, this forces equality to hold in (3.4), a
contradiction.

Next, (see [7]) the Beltrami coeficient µ for the reflection Λ has magnitude

(3.5) |(µ ◦ f)(z)| = |ζ
2Sf(z) +Aαu(|z|)− pα(|z|)|

Aαu(|z|) + pα(|z|)
, z ∈ D.

By (3.4) we then know that |µ| < 1. Thus the extension is quasiconformal away from any neigh-
borhood of ∂D. It is in estimating |µ ◦ f | at the boundary that causes complications. For this we
work with the quantity L = lim|z|→1Au(|z|)/p(|z|) and separate the cases L <∞ and L =∞.

Suppose first that L < ∞. As a side comment we observe that if f satisfies the stronger
condition

|Sf(z)| ≤ 2tp(|z|),
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for some 0 ≤ t < 1, as in the Gehring-Pommerenke theorem, then it is not necessary to perturb the
metric to get a quasiconformal extension, i.e., we can take α = 1. For in estimating the Beltrami
coefficient we then have

|(µ ◦ f)(z)| ≤ |Sf(z)|+ |Au(|z|)− p(|z|)|
Au(|z|) + p(|z|)

≤ Au(|z|) + (2t− 1)p(|z|)
Au(|z|) + p(|z|)

→ L+ (2t− 1)

L+ 1
< 1,

as |z| → 1. Hence the extension Ef is quasiconformal everywhere.

We return to the assumption |Sf(z)| < 2p(|z|). Choose α close enough to 1 so that Lα > 1;
since L > 1 this is possible. For the Beltrami coefficient we have, using (2.12),

|ζ2Sf(z) +Aαu(|z|)− pα(|z|)|
Aαu(|z|) + pα(|z|)

<
2p(|z|) +Aα(|z|)− pα(|z|)

Aα(|z|) + pα(|z|)

→ α(2α− 1)L+ (2− α)

αL+ α
,

as |z| → 1. The last quantity is less than 1 precisely when Lα > 1, and again we conclude that the
extension is quasiconformal everywhere.

Finally, suppose that L =∞. Then the dominant terms in Aαu and pα are those with (u′/u)2.
Hence this time for the Beltrami coefficient we can say

|ζ2Sf(z) +Aαu(|z|)− pα(|z|)|
Aαu(|z|) + pα(|z|)

<
2p(|z|) +Aα(|z|)− pα(|z|)

Aα(|z|) + pα(|z|)

∼
α(2α− 1)

(
u′

u
(|z|)

)2

α

(
u′

u
(|z|)

)2 = 2α− 1 < 1

as |z| → 1. The extension is therefore quasiconformal in this case too, and the theorem is proved.

Remarks on Homeomorphic and Quasiconformal Extension We stress that, on the one
hand, even with an unperturbed metric (i.e., taking α = 1) the generalized Ahlfors-Weill extension
is a homeomorphism of Ĉ when f satisfies the strict inequality |Sf(z)| < 2p(|z|). On the other
hand, without perturbing the metric the Ahlfors-Weill extension may not be quasiconformal even
under the stronger assumption |Sf(z)| ≤ 2tp(|z|), 0 ≤ t < 1. The general phenomenon that a non-
extremal function satisfying a p-criterion maps D onto a quasidisk can actually be deduced from
another theorem of Gehring and Pommerenke, in the same paper [9], together with an extension
of their work in [6], but without a method for obtaining the extension

There is, therefore, a gap in our understanding. Namely, while a non-extremal function for which
|Sf(z)| ≤ 2p(|z|) is not satisfied strictly everywhere maps D onto a quasidisk, the analysis of the
Ahlfors-Weill extension above does not apply. Nevertheless, Theorem 4 is optimal for the criterion
|Sf(z)| ≤ π2/2, for example, since then, by the maximum principle, a non-extremal function must
satisfy the criterion strictly. We discuss this example in Section 5.

4 Lemmas on Perturbed Extremal Metrics

In this section we prove Lemmas 4, 5, and 6 on perturbed extremal metrics.
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Proof of Lemma 4 Lemma 4 is a statement on the values of two limits. For the first, we
prove

(4.1) lim
x→1−

(1− x2)

∣∣∣∣u′u (x)

∣∣∣∣ = 1 +
√

1− q(1).

Recall that u is decreasing and u > 0. From (4.1) we then obtain a value for the limit L =
lim|z|→1(Au)|z|)/p(|z|)) via

Au(|z|)
p(|z|)

=
(1− |z|2)2Au(|z|)
(1− |z|2)2p(|z|)

=

(1− |z|2)2

(
u′

u
(|z|)

)2

+
(1− |z|2)

|z|
(1− |z|2)

∣∣∣∣u′u (|z|)
∣∣∣∣

q(|z|)

→
(1 +

√
1− q(1))2

q(1)

as |z| → 1.
We also see from this that

(4.2) L = lim
|z|→1

1

p(|z|)

(
u′

u
(|z|)

)2

,

the other exprression for L.

For (4.1), recall first the functions ϕ and ν in (2.8) and (2.9) and the differential equation
ϕ′′(s) = (1− ν(s))ϕ(s) in (2.10), where x(s) = tanh s. We calculate that

(4.3) (1− x(s)2)

∣∣∣∣u′u (x(s))

∣∣∣∣ = −ϕ
′

ϕ
(s) + x(s),

and we shall prove that

lim
s→∞

−ϕ
′

ϕ
(s) =

√
1− ν(∞) =

√
1− q(1),

which, with (4.3), implies (4.1).
Let s0 be the place at which ϕ has an inflection point, and fix any s1 > s0. Consider the two

initial value problems

φ′′(s) = (1− ν(s1))φ(s), and

ψ′′(s) = (1− ν(∞))ψ(s),

where φ, ψ each agree to first order with ϕ at s1. The solutions to these equations are just
combinations of exponentials, of the form

φ(s) = ae
√

1−ν(s1)s + be−
√

1−ν(s1)s,

ψ(s) = ce
√

1−ν(∞)s + de−
√

1−ν(∞)s.

Since ν is decreasing we must have ϕ(s) ≥ φ(s). Then because ϕ is decreasing it must be that
a ≤ 0, for otherwise the lower bound ϕ ≥ φ would force ϕ to tend to infinity. This condition on a
leads to √

1− ν(s1) ≤ −ϕ
′

ϕ
(s1).
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In similar fashion, ϕ(s) ≤ ψ(s), and also c ≥ 0 for otherwise ϕ would eventually be negative. This
condition on c leads to

−ϕ
′

ϕ
(s1) ≤

√
1− ν(∞).

Together these give √
1− ν(s1) ≤ −ϕ

′

ϕ
(s1) ≤

√
1− ν(∞),

and we conclude that

lim
s→∞

−ϕ
′

ϕ
(s) =

√
1− ν(∞) =

√
1− q(1),

as desired.

Proof of Lemma 5 We want to establish the inequality Aαu(|z|) ≥ pα(|z|), where Aαu
and pα are defined in (2.16) and (2.17), and α is sufficiently close to 1. If we could show that
(1 − x2)2pα(x) is decreasing then this would follow as in Lemma 2. We have not been able to
settle this one way or the other, so we must use a different argument. The main inequality, a local
improvement of Lemma 2, is provided by the following lemma:

Lemma 7 There exists an 0 < r0 < 1 such that

Au(|z|)− p(|z|) ≥ 1

2
p(0)(p(0)− 1)|z|2

for |z| ≤ r0.

Proof We recall the nonincreasing function q(x) = p(x)(1 − x2)2, used many times to this point,
and the functions w(x) = u(x)/

√
1− x2 from (2.7) and ϕ from (2.8). Let r = |z|. Suppose that p

is C1. Then

(ru2(r)(A(r)− p(r)))′ = ru2(r)p(r)

(
−4

w′

w
(r)− q′

q
(r)

)
≥ −4ru2(r)p(r)

w′

w
(r).

Hence

ru2(r)(Au(r)− p(r)) ≥
∫ r

0
xu2(x)p(x)

(
−w

′

w
(x)

)
dx = r

∫ r

0

xu2(x)p(x)

1− x2

(
−(1− x2)

w′

w
(x)

)
dx.

But,

−(1− x2)
w′

w
(x) = −ϕ

′

ϕ
(s), s =

1

2
log

1 + x

1− x
,

and ϕ′′ = (1 − ν)ϕ. Since ν(0) > 1, ν(s0) > 1 for s0 > 0 small. Then ν(s) ≥ ν(s0) for s ∈ [0, s0],
and for s in this range the Sturm comparison theorem gives that

−ϕ
′

ϕ
(s) ≥ −η

′

η
(s),

where η is the solution of

η′′ = (1− ν(s0))η, η(0) = 1, η′(0) = 0.
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Thus η(s) = cos(
√
ν(s0)− 1s) and

−ϕ
′

ϕ
(s) ≥

√
ν(s0)− 1 tan(

√
ν(s0)− 1s),

or

−(1− x2)
w′

w
(x) ≥

√
ν(s0)− 1 tan

(√
ν(s0)− 1

1

2
log

1 + x

1− x

)
,

for x ∈ [0, r0], where r0 = tanh s0. Since ν(s0)→ p(0) as s→ 0, it follows that for r0 small enough
and x ∈ (0, r0]

−(1− x2)
w′

w
(x) ≥ 1

2
(p(0)− 1)x.

Note that r0 depends on the modulus of continuity of p at 0.
We conclude that for r ∈ [0, r0]

ru2(r)(Au(r)− p(r)) ≥ 4

∫ r

0

xu2(x)p(x)

1− x2

1

2
(p(0)− 1)x dx ≥ 2(p(0)− 1)u2(r)

∫ r

0
x2p(x) dx,

because u is decreasing. Hence

ru2(r)(Au(r)− p(r)) ≥ 1

2
p(0)(p(0)− 1)u2(r)r3,

where, for r ≤ r0, small, we have used∫ r

0
x2p(x) dx ≥ 3

4
p(0)

∫ r

0
x2 dx =

1

4
p(0)r3.

It follows that

Au(r)− p(r) ≥ 1

2
p(0)(p(0)− 1)r2

for r ∈ [0, r0], where the number r0 depends on the modulus of continuity of p at 0.

This proves the desired inequality if p is C1. When p is C0 we consider it as a uniform limit,
say in the interval [0, 1/2], of C1 functions.

Remark If p is C1 then

ru2(r)(Au(r)− p(r)) =

∫ r

0
xu2(x)p(x)

(
−4

w′

w
(x)− q′

q
(x)

)
dx,

hence ru2(r)(Au(r)− p(r)) is nondecreasing because the integrand is nonnegative. It follows that
ru2(r)(Au(r)− p(r)) remains nondecreasing when p is C0. Since for r > 0, small, Au(r)− p(r) > 0
by the preceding lemma, we conclude that Au(r)− p(r) > 0 for all r > 0.

We can now prove Lemma 5 for perturbed extremal metrics, namely that

Aαu(r) ≥ pα(r), r ∈ [0, 1].

Suppose this is false. Then there is a sequence αn ↗ 1 and points rn ∈ [0, 1) such that Aαn(rn) <
pαn(rn). As r → 1 the leading term in Aα is α(u′/u)2 which will be bigger than the leading term
α(1 − α)(u′/u)2 in pα when α is close to 1, say α ≥ α0. This prohibits the rn from accumulating
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at 1. The preceding lemma also prohibits them from accumulating at 0. For this, note that the
ineqaulity Aαu ≥ pα is equivalent to

Au(r)− p(r) ≥ 2(1− α)

(
u′

u

)2

(r).

Since u′(0) = 0, the lemma implies that Aα(r) ≥ pα(r) for r < r0 and α ≥ α0.
Therefore the rn must accumulate at some r̄ ∈ (0, 1), which leads to

Au(r̄) ≤ p(r̄).

This contradicts the Remark, above, and completes the proof of Lemma 5.

Proof of Lemma 6 The last lemma on perturbed metrics is the implication |Sf(z)| <
2p(|z|) =⇒ |Sf(z)| < 2pα(|z|) for α ≥ α1, sufficiently close to 1. We recall the limit L =
lim|z|→1 p(|z|)−1((u′/u)(|z|)2. Since L > 1 we have the inequality

(4.4) p(|z|) ≤ α
(
u′

u
(|z|)

)2

,

for |z| and α close enough to 1, respectively, say r1 ≤ |z| < 1 and α′ ≤ α ≤ 1. After cancellation,
(4.4) is precisely the statement that p(|z|) ≤ pα(|z|), and hence, on the one hand, |Sf(|z|)| <
2pα(|z|) for |z| and α in this range. On the other hand, since |Sf(z)| < p(|z|) for all z ∈ D there is
an α′′ < 1 so that |Sf(z)| ≤ 2αp(|z| < 2pα(|z|) for |z| ≤ r1 and α′′ ≤ α ≤ 1. These two estimates
together prove the lemma for α1 = max{α′, α′′}. Notice that α′′, and hence α1, depends on the
size of |Sf |.

5 An Example

The univalence criterion |Sf(z)| ≤ π2/2, from Nehari’s original 1949 paper, provides an interesting
application of the ideas here. As mentioned in the introduction, it follows immediately from the
general univalence criterion (1.4) with the simplest choice of background metric, the euclidean
metric on D. But the euclidean metric is not complete. If instead we use a p-criterion with
p(x) = π2/4 then the associated extremal metric is

F ′(|z|)|dz| = cos−2
(π

2
|z|
)
,

which is complete, and |Sf(z)| ≤ π2/2 implies∣∣∣∣ζ2Sf(z) +
π2

4
tan2

(π
2
|z|
)

+
π

2

1

|z|
tan

(π
2
|z|
)
− π2

4

∣∣∣∣ ≤ π2

4
tan2

(π
2
|z|
)

+
π

2

1

|z|
tan

(π
2
|z|
)

+
π2

4
.

Because L = ∞ in this case, we must still perturb the metric to obtain a quasiconformal
extension for a function satisfying the strict inequality |Sf(z)| < π2/2, or even the strong inequality
|Sf(z)| ≤ 2tπ2/2, t < 1. Observe that by the maximum principle, any non-extremal function
satisfying |Sf(z)| ≤ π2/2 must satisfy the inequality strictly.

14



Refering first to (2.14), we need to find α ∈ (1/2, 1) so that Lemmas 5 and 6 hold for the metric
cos−2α(|z|)|dz|. The quasiconformal extension for f will then be induced by the reflection in the
image given by

(5.5) Λf (z) = f(z) +
2|z|f ′(z)

απ

2
tan

(π
2
|z|
)
− |z|f

′′

f ′
(z)

.

The inequality Aαu(|z|) ≥ pα(|z|) for determining α ≥ α0 in Lemma 5 reduces to the require-
ment that

α0 ≥
1

2

[
1 + cot2

(πx
2

)(
1− 2

πx
tan

(π
2
x
))]

.

The maximum of the right hand side is 1/2, so any α ∈ (1/2, 1) will do here.
In Lemma 6 we need α ≥ α1 to get from |Sf(z)| < π2/2 to the perturbed version

(5.6) |Sf(z)| < pα(|z|) = α
π2

2

(
1 + (1− α) tan2

(π
2
x
))

.

Here, the choice of α1 depends on the size of |Sf |, and so the parameter α in the reflection Λf will
then depend on f . However, if we start with f satisfying the stronger inequality |Sf(z)| ≤ tπ2/2
for some 0 ≤ t < 1 then (5.6) holds with any α ≥ t. In this case Λf will give a quasiconformal
reflection in the image for any max{1/2, t} < α < 1.
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